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WALL EFFECTS IN WIND TUNNELS

by J.P. Chevallier and X. Vaucheret

INTRODUCTION /3"

The recent first commercial operation of the NRF high Reyn-

olds number wind tunnel (NASA Langley) [i] , the European ETW

wind tunnel project [2] and the continuous request of manufactur-

ers for more specific test conditions in existing installations

have led to the creation of different work groups to study the

problem of wall effects from the three-fold standpoint of their

determination, their reduction and their correction. We may men-

tion in particular an AGARD work group under the auspices of the

"Wind Tunnel Testing Subcommittee of the Fluid Dynamics Panel" [3],

and the GARTEUR action groups [4]. The most important results

were also presented during the following meetings:

-AGARD-FDP Meeting at London on May 19, 20, 1982 (17 reports

on wall effects in wind tunnels) [5];

-AGARD FMP Meeting at Smyrne on October ll to 15, 1982 [6];

-Working sessions on "the reduction and correction of wind

tunnel wall effects" NASA Langley Research Center January 25-26

1983 [7].

-53rd AGARD FDP Meeting on "Wind Tunnels and Testing Techniques"

at Cesme on September 26 to 29, 1983 where 36 reports were presen-

ted, particularly that of Bionion and Kraft [8], presenting the

conclusions of the 1982 meeting at London [5].

Of all studies presented, our purpose is to reveal which of

these are current trends and to specify our own practices. To

accomplish this, we shall first examine the means currently used

to reduce wall effects, then recent methods of calculating these

effects, because the two problems are now intricately interrelated.
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It seems that there is a quasi general agreement on the need to

use measurements of the speed field in the vicinity of the walls

to calculate interferences. Measurements of the same type will

be used for testing the boundary conditions when we try to mini-

mize these interferences.

In the second part the methods are applied to industrial

wind tunnels based on parietal measurements so as to test the

representation of the model and its support.

1 - VARIOUS METHODS FOR REDUCING OR CALCULATING WALL EFFECTS

1.1 - REDUCING WALL EFFECTS

It is generally achieved because the term "adaptive walls"

r is used. It is a vague term covering highly diverse practices

using for example:

-permeable walls (perforated walls with variable porosity,

fractionated suction chambers, controlled back-pressure; changing

slits with valves or counterplates; transversal flaps),

-flexible solid walls. /4

Various devices for measuring the speed field are combined

with these means of testing the transversal flow component: iso-

lated probes, longitudinal tubes fitted with pressure taps, laser

velocimetry, parietal taps. We will limit ourselves to a brief

description of operational systems, the results of which are pub-

lished and to the most advanced projects, primarily for two-dimen-

sional testing. The characteristics reduced in terms of test sec-

tion height (table i) facilitate comparisions.



-Wind Tunels With Perforated Walls and Multiple Chambers

The first developed at CALSPAN based on Sears% ideas [9] has

a section 25 cm wide and 30 cm high, walls with normal perforations

(22.5% opening) with 8 lower chambers and i0 upper chambers, tested

individually. Measurements of the flow speed and direction on the

control surface, performed at the beginning with clinometric probes

now are due to the calibration of longitudinal tubes equipped with

2 rows of pressure taps arranged over opposite generators. These

tubes, installed over a rotary support, should enable measurements

to be performed on a cylindrical control surface for the extension

of three-dimensional flows (_ind tunnels IT, then 4T Of AEDC)

figure i.

-Wind Tunnel With Slits and Multiple Chambers

At the center of AMES [10], a 25 x 13 cm wind tunnel has 6

suction compartments for each wall. These compartments are in

turn divided widthwise into 3 chambers for a three-dimensional

adaptation. The measurement of 2 disturbance speed components

on one control surface is replaced by the use of 2 control sur-

faces with measurement of the one cross-component using a laser

velocimeter.

-2D Wind Tunnels With Solid Flexible Walls

At the Univeristy of Southampton, the TSWT (Transonic Self
2

Streamlining Wind Tunnel) has a 15 x 15 cm square section and a

very long test section (1.12 m) whose upper and lower walls are

each shaped using _0 electric actuators with a similar number of

parietal pressure taps [ii]. As such the wind tunnel was used for

two- and three-dimensional testing to determine whether the dis-

turbances to be measured on the walls of these are difficult to

obtain with precision (figure i).

At the Technical University of Berlin [12], the T.U.B. wind



tunnel has a 15 x 15 cm2 square section with two flexible walls

over 0.69 m each shaped by 8 direct current acutators with a 25 mm

path and equipped with some 20 pressure taps.

At CERT at Toulouse, the T2 wind tunnel [18], which was the

subject of 2 reports [13, 14] has over its competitors the advan-

tages of one order of magnitude at least with respect to the Reyn-

olds numbers (0.37 x 0.38 m2 test section and generating pressure

5b) and an excellent re_&tive precision in the knowledge of wall

shapes (.usingpotentiometers of about 0.05 mm) and speed distribu-

tions (with 91 pressure taps on each wall). By vectorizing the

program for calculating the virtual field and optimizing the relax-

ation factors reducing the time required for adaptation during a

gust of a few tens of seconds.

In addition to these advantages, the T2 wind tunnel has a rela- /5

tively short test section (.tablei). What can we conclude about

the precision of the reference conditions obtained in these condi-

tions? We shall return to this essential point after a brief re-

view of the new methods of assessing wall effects. It should be

pointed out that an attempt has been made to compensate for lateral

boundary layer effects using reliefs made by gluing paper cut out

in the shape of level lines [15]. This procedure finds its justi-

fication in recent CEAT tests [16] which show the existence at the

root of the model two small counter-rotative vortices, very differ-

rent from the modelization proposed by Preston [17].

3D Wind Tunnels With Flexible Walls

At the NASA center of Wright Field a 9' x 9' test section

(i.e. about 23 x 23 cm) operating under 4b has 2 flat side walls

whereas the other two are made up of flexible rods with alterna-

ting circular and triangular sections activated by some 100 actu-

ators. No measurement was performed on the walls [3].



At the Technical University of Berlin [12] a second test

section, with an 18 x 15 cm2 octogonal section, is used for 3D

tests. The feasibility of such tests was demonstrated recently

in an operation at Cesme in September 1983 (figure 3), despite

the small deformations to be achieved (of the order of one mm).

At DFVLR, in the advanced project, Dehnbare Adapative Meb-

strecke (DAMI the circular test section was made up of an elastic

tube 800 nanthick whose diameter was stretched into 8 sections by

8 actuators [12] (figure 5).

1.2 - NEW METHODS OF CORRECTING WALL EFFECTS

This was the title, in s_ngular form, of a report presented

at the 14th Symposium of Applied Aerodynamics at Toulouse in 1977

[19]. We still use this name for methods which have multiplied

for 6 years and whose common points is to call on measurements

made on walls or in their vicinity. Created from the necessity

of being applicable to adaptive, but not perfectly adapted walls,

this type of method has for conventional walls the advantage of

eliminating certain controversial assumptions on lineary boundary

conditions [18, 20].

Without going into too much detail, we may mention the follow-

ing methods in the order they appeared:

Kemp: the unknown intensity of the singularities arranged

at the walls and at the location of the model is determined to

satisfy with speed measurements on an equal number of control

points, on the model and at the walls, by resolving the linear

system formed with the corresponding impact factors. The parietal

singularities thus defined contribute alone to the interferences

under investigation.

-Smith [25]: the NLR I method differs:from that of Kemp only

5



in the limi%ation of the unknown singularities at the wall, the

model being represented by given singularities, functions of its

geometry and of overall lift and drag measurements.

Capalier et alii [19]: in contrast to the two aforementioned

methods the formulation expressed in terms of integrals of the

speed deviations measured at the walls and calculated for the model

avoids resolving the linear system and therefore eliminates the

consequences of random errors in the measurements. This method

applies not only to the two-dimensional case, but also to three-

dimensional flows in test sections with a rectangular section and

flat side walls.

Swada [22] presented a very similar method which he recently

applied to two-dimensional unsteady flows [37].

o

Mokry and Ohman [23]: Direchlet's problem for the axial speed

inside the surface upon which boundary data are collected is sol-

ved in the form of a Fourier-Bessle series for three-dimensional

cases. Their coefficients are obtained using rapid Fourier trans-

forms.

For corrections calculated on the axis of the test section,

a :cylindrical control surface may be used no matter what the

shape of the test section has.

Mokry compared these methods [24] on a two-dimensional test

case and showed that [19] and [23] gave identical results and

[22] and [25] deviated only very slightly.

Ashill [27] as well as Smith in the unpublished NLR II method

avoiding the use of the model which may be delicate in the presence

of supersonic or separation regions in the flow. They should

therefore use measurements of the two disturbance components in

the vicinity of the walls.



All of these methods are of the linear type and are limited

for this reason below M = i. Also they implicitly assume that the

boundary conditions are homogeneous enough for the measurements

near the walls to be significant.

For any method used, the precision required in knowing the

two disturbance components will be brought to light through the

explicit formulation of the speed and incidence corrections based

on the relative longitudinal disturbance component u [19] cu, ac-

cording to the so-called conjugated formulation [28] on the rela-

tive transversal component ,By letting u_ and v_ be the wall

interference components at the center of the test section and by

simplifying the formulas given in [18] based on an empty test sec-

tion.

\

&

'

No problem is raised by using formula (i) because it was

shown that it tolerates the truncation of the integration termin-

als owing to the rapid decrease in the impact function and the

fact that it eliminates the reference errors. The same is true

for formula (4) in regard to incidence. Conversely, for f_rmula

(2) it is necessary to determine the constant C. It is zero if

we adopt as reference a flow direction which is sufficiently up-

stream so that the difference_(i, _iz)_C_is zero. It also

shows in the nucleus of the integral a speed difference which is

delicate to measure.

7



Based on these formulas we therefore conclude that to _apply

the so-called new correction methods it ,isnecessary to know, at

a right angle with the model, the speed vector in modulus and dir-

ection, in the vicinity of the walls, with a precision of the same

order of as that required on so-called "upstream infinity" condi-

tions.

1.3 - DETERMINING THE REFERENCE CONDITIONS

The crucial importance of determining these conditions accur-

ately was recently recalled in a report under the "Wind Tunnel

Testing Techniques" Committee of AGARD-FDP which set fort the re-

quirements of airplane manufacturers with respect to wind tunnels

[29].

The investigation of an error limited to _Cx = 0.0001 leads
to _M = 0.001 and be = 0.01° in regard to the Mach number and the

incidence. This goal, which seems a challenge, actually deserves

considerable effort because in other sources [30] it is shown that

a 1% gain in the cruise drag (considerable only in these conditions)

is profitable even if we have to quintuple the number of aerodyna-

mic tests of a transport aircraft.

How can we possibly know the direction and speed of an "infin-

ite upstream" flow in a wind tunnel with such accuracy?

Excluding the support effects, which will be discussed in

the second part, and remembering that we have to know the direction

and speed on a control surface with the same precision, by examin-

ing the errors inherent to the various procedures for measring the

flow disturbance components (laser, clinometric probes, etc), here

at ONERA we think that there is only one valid procedure: using

deformable solid walls where the quality of the surface condition

and pressure taps is equal to that obtained on airfoils and posi-

tion measurements showing the shape of the wall (which will be

8



corrected for the boundary layer displacement thicknesses).

Among the wind tunnels which try to achieve these conditions,

we see that T2 has a shorter test section, but that it is long

enough to define the reference conditions perfectly, given the

balance functions discussed above. It has the largest number of

parietal pressure measurements and actuators near the model and

the best definition of the wall positions. The scope of the dis-

placements is slightly smaller and as a result the dimension of

the model is limited. The displacement pitch in other regions is

too strong.

In these apparently optimal conditions, has the objective

focussed on been achieved? It is virtually impossible to calcu-

late an error: the shapes of adaptive walls are derived by pro-

cessing an external virtual flow using Green's formula and whose

parietal speed measurements are the data. Conversely, the over-

speeds at a right angle with the model are also functionals of /8

the slopes obtained by smoothing and interpolation of the measured

dimensions. An intrinsic validation was therefore tried by plac-

ing the same md0el (CAS 7 airfoil with a 200 mm chord) over the

axis of the wind tunnel and at 80 mm below this axis. By adapting

each case, the wall shapes and parietal pressure_distributions are

totally different [15]. The variation of the lift factor as a

function of the Mach number for angles of 0 and 1°, shown in fig-

ure 6 on a large scale, shows the dispersion of the measuring

points. The latter does not show any systematic deviation due to

the difference in testing conditions and it seems small enough for

us to be able to conclude that the objective is virtually if not

fully achieved. This success in two-dimensional testing leaves

promising prospects for extensions to three-dimensional flows pro-

vided that all precautions are taken to observe the purety of

the flows, the homogeneity of the boundary conditions and the pre-

cision of the parietal measurements in the presence of considerably

smaller disturbance fields.

9



2 - WALL AND SUPPORT EFFECTS IN ONERAIS INDUSTRIAL WIND TUNNELS

In wind tunnels not yet equipped with adaptive walls and with

magnetic suspensions, it is still necessary to make corrections

for wall and support effects to restore as far as possible the re-

sults which would be obtained on models in an unlimited atmosphere.

There are two types of corrections to be made for the potentials

under consideration:

-the wall effects are calculated based on the interference

potential promoted by the walls,

-the support effects are the result of the sum of the poten-

tial of the supports in an unlimited atmosphere and of the inter-

ference potential promoted by the walls.

2.1 WALL EFFECTS

Two methods are currently employed for calculating wall effects.

These methods have already been presented.

The first method, called the "conventional method" [31] con-

sists of calculating the potential promoted by the walls by sol-

ving a problem whose data are the following:

-the potential of the model in an unlimited atmosphere,

-the boundary conditions on the walls of the test section

involving the concept of equivalent uniform wall porosity.

The second method, called the "signature method" [19] allows

the potential promoted by the walls to be derived from data con-

sisting of:

-the potential of the model in an unlimited atmosphere,

i0



-the distributions of pressures measured on the control

surfaces of the test section (signatures).

These two methods have in common the assumption of a cylin- /9

drical test section reaching to infinity, and the necessity of

making use of a mathematical description of the model.

2.1.1 Mathematical Description of the Model

Since we are referring to a corrective calculation and not

a calculation of the flow on the model, the specification of the

model is rudimentary: it should include the required number of

singularities for the model field to be properly _epresented at

a distance from the model. The best way to control the specifi-

cation consists of comparing the signatures measured and calcula-

_- ted on the walls of the test section in a configuration with per-

fectly known boundary conditions: in this case the _se of solid

walls is unambiguous.

The iterative process (figure 7) is the following: using sig-

nature measurements on the walls of a guided test section, in the

presence and in the absence of a model, by adding and subtracting

we find the parts for the locking and lift terms Corresponding to

an isolated model. The model specification associated with zero

porosity conditions of the walls makes it possible to obtain sig-

natures at the same locations of the test section and to divide

them into locking and lift terms. An examination of the differen-

ces between calculated and measured signatures makes it possible

to check whether the model specification should be improved and in

this case which part of the specification, volume, wake, lift is

to be altered to be acceptable in terms of manufacturer specifica-

tions.

Two examples illustrate the mathematical specifications of

the model.

ii



The first example concerns tests on a profile in a flat

current in S3MA in a guided test section configuration. An ex-

ample of the signatures measured in the presence of a profile,

then corrected of the readings in the absence<,ofa profile (figure

8) show that the tapping errors were eliminated as well as the

effect of the wake comb located downstream. A comparison of the

calculated and measured signatures (figure 9) show that the lift

description due to two intensity vortices derived from measurements

of Cz and CM is adequate [32]. At zero lift, the description of
the volume us£ng a single doublets is also adequate. Conversely,

the description of the wake usin_ a single source is increasingly

incorrect when Zz (therefore Cx) increases. This is due to the
absence of the tapping by considering the separations in the des-

cription. Work is now underway to correct this.

_- The second example concerns a space model (figure i0) in a

47 m2 SIMA test section. The description of the streamlined bodies

is here a double doublets number of the ratio between the length

and diameter of the body. We see that the calculated signatures,

in good agreement with the measurements, personalize well the

shape of the model: flat signature for the fuselage alone, bulging

for the entire spacecraft.

When the mathematical description of the model is considered

to be correct, calculations may begin to correct the wall effects.

2.1.2 Signatures Method /10

As indicated above, this method does not require knowledge

of wall porosities. One simply needs to measure the signatures

over a control surface so that the wall porosity effects are hom-

ogeneous.

In perforated walls, and afortiori solid ones, these aontrol

surfaces are the walls themselves. The duration of the signature
measurements does not exceed that of the wake measurements of a

12



flat current profile. This method is systematically applied to

profile testing in S3MA. The corrected results obtained on the

CAST 7 profile are in good agreement with those obtained in

the test section with adaptive walls of the T2 wind tunnel of

CERT/TOULOUSE (figure ii) as well as for the lift curves and for

the stability curves of the maximum Cz.

In the case of walls with slits, the signatures may no longer

be sampled on the walls. According,_toa recent publication [20],

the signatures should be recorded &t a distance from the walls

which is virtually equal to the slit pitch. This is a problem

forJthe test section which as a limited number of slits.

2.1.3 Conventional Method

_-- In addition to a correction description of the model, it is

necessary in the conventional method to know the wall porosity

laws as a function of the Mach and of the generating pressure and

to validate the concept of uniform wall porosity.

The reference tests [31] are referred to determine the wall

porosity laws. These tests may be obtained by performing tests

on the same model, with the same Reynolds number:_

-in the same test section rendered guided by the ventilation

mask,

-in a test section with such dimensions that the wall effects

are negligeable.

As far as possible the second type of reference is preferred

because it has no limits due to the test section locking and does

not require corrections which are high in three-dimensional cases.

The iterative process used for defining the porosity laws

is the following (figure 12).

13



The work always includes an interpolation in M, Cz of
the wind tunnel data. The first assessment of the deviations

to be reabsorbed by corrections is established in incidence de-

viations as a function of Cz at a fixed Mach, and in Cx deviations

as a function of M for a given Cz.

The deviations of M and Cz between interpolated results, cor-
rected for the reference test and not corrected for the ventilated

wall test are introduced into the curve networks established as a /ii

function of porosity. Th_s gives the first porosity law. It is

used to ocrrect the results of the ventilated wall test. The dif-

ferences between the interpolated results corrected for both tests

are then examined. If these differences satisfy the manufacturer's

precision specifications, the work is completed. Otherwise, the

process is repeated. In general, three iterations are necessary.

If differences still exist, the reasons are investigated.

An examination of the pressure distributions measured on the

walls of the test section make it possible to define the Mach-in-

cidence limits beyond which the Mach number is greater than i. In

fact, this value is obtained on the ceiling and there is not yet

any locking of the test section: the supersonic region on the top

skin of the wings reaches the cieling. The wall corrections are

no longer applicable. Figure 13 shows, for a corrected Mach, the

limits obtained at SIMA for three slit conditions and at S2MA for 2

homothetic models.

In the case of an S2MA transonic test section, for two used

conditions of perforated walls (by opening slide valves by i00 and

55% to modify the porosity), the porosity laws (figure 14) were

established by using as reference tests tests on the same model

in SIMAwith an area 13 times larger than that of S2MA. These laws

_ proved to be correct for full and half civilian aircraft models

up to Mach 0.92 and for full military aircraft models up to the

limits due to supersonic zones.

14



In the case of a 20 m2 SIMA test section, the porosity laws

(figure 14) of 4-slotted or 8-slotted open configurations were

defined in the reference for tests performed in closed slotted

configuration. These laws are correct up to Mach 0.85.

Beyond this value, there are still differences between the

corrected results, obtained for the three test section cases, and

an attempt is being made to resolve these differences.

2.1.4 Indirect Signatures Method

One variant of the conventional method consists of basing

onself on the signatures calculation as a function of the porosity

parameter assumed to be uniform and by comparison with the meas-

ured signatures to derive the wall porosity cartography. This

_-_ variant was used for the case of the S3MA perforated wall test

section. After verifying the correct description of the locking

and lift terms in a guided test section, figure 15 shows that for

perforated walls, a comparison of the signatures leads to a Q

uniform porosity _parameterQ of 0.2 on the walls. This porosity
is moreover identical to that derived from the overall efforts in

a guided reference test section.

In fact, this indirect signatures method is used to check the

validity of the wall uniform porosity concept.

In test sections with perforated walls, a porosity test by /12

comparing the measured and calculated signatures has not raised

any special problems. As with this case the concept of a uniform

equivalent porosity was not handicapped by examining the signa-

tures. The conventional method was retained because it is not

penalizing in terms of computer time, after the porosity laws are

established. Generally speaking, the more the porosity concept

is uniform, the more the mathematical description of models and

stings proves to be inadequate.

15



2.2 MODEL SUPPORT INTERFERENCES

Corrections of the Mach number and of the Archimedean thrust

brought about by the presence of model supports may be obtained

experimentally based on measurements of the Kp distributions at

the location which the model _fuselage axis would occupy. A clin-

ometric sounding would also make it possible to know the tail J

unit setting cor_ection due to supports.

To avoid costly soundings, a calculation may be performed.

Two methods are used at present.

The surface singularities method begins with_a meshing of

obstacles in the test section of on its walls. This technique is

directly derived from techniques used by manufacturers in an un-

limited atmosphere by adding the walls to simulate the contained

atmosphere of the test sections. Illustrations of the meshing are

therefore borrowed from manufacturers. Figure 16 shows [33] the

sting and sting holder in the $5 guided test section of CEAT-

TOULOUSE used,by DASSAULT-BREGUET. Figure 17 shows the meshing

of a Mirage model installed on the wall of the S2MA guided test

section and of the device with 6 degrees of liberty to study load

trajectories: calculations performed by LE BOXEZ of AMD-BA.

Figure 18 is concerned with the assembly of a civilian air-

craft twin sting in a guided test section meshed by AEROSPATIALE.

More complex cases including ventilated walls and descriptions of

test section ends and upstream parts with tapered section are un-

der study. This method is still complicated to use and requires

powerful computers.

A description of test section obstacles using singularities

. distributed over their skeletons of various shapes has been tried

recently by ONERA [34]. The only data are the coordinates of the

assmbly skeleton and the area rule.

,\
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An attempt is made to validate this method in an unlimited

atmosphere by comparison with the results of previous more soph-

isticated methods. Figure 19 shows, in these conditions, a good

agreement of the Kps and incidence _promoted by an inclined sup-

port:_Usedin a sabre assembly of the F4 model.

The support description is tested in the guided test section

by comparing the measured •and calculated signatures. In this

case, a description of the model-support system is used. Figure /13

14 shows the case of an ONERA standard model assmbled in a

sraight sting in the S3MA g_ided-rendered test section. A model-

ization with 20 doublets for the model and 15 for the sting pro-

vide a good agreement of the signatures.

Returning to the case of the F4 model in an S2MA transonic

test section, figure 19 gives the Kp distributions on the line

which the fuselage axis would occupy for various wall porosities.

We should insist on the relative magnitude of the wall effects

and sting interferences. In the case of an S2MA wind tunnel (fig-

ure 20), in the perforated wall version with maximum rate, the in-

cidence corrections are zero. The drag corrections resulting from

the longitudinal gradients promoted on the suppor_ sting and the

wall effects are in a 3 to 4 ratio for a civilian aircraft model.

The sting interference is more crucial for military aircraft mo-

dels whose incidences may exceed 40 degrees (and even higher for

missiles) [35,36]. Given these high values and the stresses to

contain, the volumes of model support mechanisms are such that the

wall effects for a well conditioned test section may seem secon-

dary. This real problem, in the absence of a magnetic suspension,

deserves to be considered first for future active wall wind tunnels.

2.3 APPLICATION TO INDUSTRIAL TESTING

We now have correct descriptions of models and its supports

and of the test section porosity laws. As of now the corrections
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are all calculated prior to testing for a specific case of a

test section, wall configuration, supports, model.

These corrections (figure 21) include four parts:

-corrections relative to an empty test section obtained from

corrected soundings, if necessary, and from the influence of the

probe support,

-calculated or measured support interferences,

-corrections of wall effects and of the field impact of the

model on the test reference.

In all the computer calculations provide a set of corrections

depending on M, Cx, Cz (or incidence) expressed in the form of a
table or polynomial laws which are introduced in the wind tunnel

calculations to obtained real time corrected results. The cor-

rection calculations also provide the total field promoted by the

walls and supports, for a Mach distribution and incidence correc-

tion on any point of the model. It is easy/ to know the spin and

camber corrections of the wind promoted by the walls and the local

M and tail unit setting corrections due to the model supports.

CONCLUSION /14

The advantage of pressure measurements on the walls of test

sections was clearly established for calculations of wall effects.

For reasons of convenience associated with the in_ended use of

wind tunnels, these pressure measurements are still performed:

-occassionally in 3d to control the concept of uniform por-

osity of perforated walls and 6o check the mathematical descrip-

tions of models and supports in a guided test section,

-systematically in 2D for direct access to corrections,

18



-imperatively in test sections with adaptive walls,

-finally with suspicion in test sections with slotted walls.

The measurements should be performed at a distance from the walls

which is technologically difficult to do.

If the advantage of additional measurements of the other

component of the local flow on control surfaces is to eliminate

any model description, a real problem of measurement precision has

not yet been solved.

Optimized test confi@urations (test section, sting, model)

is the result of a compromise between wind tunnel investments,

the cost of testing and the quickness with which the results pre-

pared are rectified. In three-dimensional cases, the wall effect

levels are reduced_by limitations in model size due to the span

for civilian aircraft, due to the length for high incidence mili-

tary aircraft. Small displacements of flexible walls will require

greater accuracy in pressure measurements and in the positions of

adaptive actuators. Test sections with 3d adaptive walls are still

too recent to know their application limits and operating difficul-
ties.

Meanwhile, it is suggested to use adaptations to the main

point of a test program. These adaptations may concern:

-models whose manufacturing specifications account for dis-

torsions in the flow of conventional walls (as practiced for aero-

elasticity);

-walls which should meet specifications using conventional

padding whether or not associated with improved ventilation dis-

tributions.

In any case, continuous revisions of concepts for minimizing

wall effects should follow improvements in the specifications for

precision required by manufacturers.
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Table 1

Wind Tunnels With Controlled 2D Boundary Conditions

TestSection BoundaryConditions Model
Wind Location Section.._,,_1 Length/H ControlTunnel C/H

Nb Points (paths,
Tnreshold/H

T.S.W.T.University15x15cm2 7.33 20 actua- 0.6 to 1
of South tors
Hampton

T.U.B. Technical 15x15cm2 4.6 8 actua_ _-'-0.165.10-410.66
University torsof Berlin

._- T2 . ONERA-CERT 39x37 an 2
Toulouse 3.5 16 actua-0.07 10-4 0.3to 0.5tors

CAIBPAN Buffalo 25x30(ra2 4.6 10 boxes Longitudinal
AEDC Tullahoma (perfor-Tubes0.3° 0.3to 0.5

ated
walls)

NASA California25x13cm2 5.66 3x6 Laser 0.6
Ames boxes Velocimetry

(slottedovertwo ;
holes) 0.05° planes
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Table 2

Main Methods of Calculating Wall Effects Using
Parietal Data

I Author DataRequired ResolutionMethod Applicability
I At Wall On Model

n+p sing.distributiont KI_4P[21] u 2D and potentially

I up m on wall and linearmo_el___stem 3D

I CAPELIER Cz,Ca,Cx NumericalIntegration 2D and 3D in rec-I
t |19] u oF U gecmetry& Explicityor tabulated tangulartest sec-
I measure- ImpactFunctions tionwith flat

ment lateralwalls
@

I

i Cz,Ca,Cx distribu-SingularitiesSMITH gecmetry& ticnson walls 2D
I [25] up measure- LinearsystemI NLR I ments
I
I
I SAhYH3A Represen- FastFFTFourierSeries 2D and 3D with

_-_ I [22][37] u tation Green'stheorem unsteady_ lI ofm= l
I
I MORRY Represen- FastFFT FourierSeries 2D and 3D with
I [24] u tation cylindricalsur-
i of model facecontrol
I
I

i ASHILL[25] u & u No repre- Green'stheoremapplied
t and NRL II sentation insidethecontrol 2D and 3DI
! surfaceI
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Fig. 2 - Wind Tunnel of Southampton University
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Actuators

Fig. 5 - AFFDL Pilot Wind Tunnel With Flexible
Wall Elements
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Fig. 6 - CAST 7 Profile. Lift as a Function of Mach Number
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WALL EFFECTS IN WIND TUNNELS

by J.P. Chevallier and X. Vaucheret

INTRODUCTION /3"

_rF
The recent first commercial operation of the NRF high Reyn-

olds number wind tunnel [NASA Langley) [i] , the European ETW

wind tunnel project [2] and the continuous request of manufactur-

ers for more specific test conditions in existing installations

have led to the creation of different work groups to study the

problem of wall effects from the three-fold standpoint of their

determination, their reduction and their correction. We may men-

tion in particular an AGARD work group under the auspices of the

"Wind Tunnel Testing Subcommittee of the Fluid Dynamics Panel" [3],

and the GARTEUR action groups [4]. The most important results

were also presented during the following meetings:

-AGARD-FDP Meeting at London on May 19, 20, 1982 (17 reports

on wall effects in wind tunnels) [5];

-AGARD FMP Meeting at Smyrne on October Ii to 15, 1982 [6];

-Working sessions on "the reduction and correction of wind

tunnel wall effects" NASA Langley Research Center January 25-26

1983 [7]. I;

-53rd AGARD FDP Meeting on "Wind Tunnels and Testing Techniques"

at Cesme on September 26 to 29, 1983 where 36 reports were presen-

ted, particularly that of Biinion and Kraft [8], presenting the

conclusbons of the 1982meeting at London [5].

Of all studies presented, our purpose is to reveal which of

these are current trends and to specify our own practices. To

accomplish this, we shall first examine the means currently used

to reduce wall effects, then recent methods of calculating these

effects, because the two problems are now intricately interrelated.

1



It seems that there is a u._l general agreement on the need to
use measurements of the __field in the vicinity of the walls

to calculate interferences. Measurements of the same type will

be used for testing the boundary conditions when we try to mini-
mize these interferences.

In the second part the methods are applied to industrial
•

wlnd tunnels based o_rb_r_et_measurements so as to test the
representation of the model ahd its support.

1 - VARIOUS METHODS FOR REDUCING OR CALCULATING WALL EFFECTS

i.i - REDUCING WALL EFFECTS

_Ai_nerally achieved beca_s_the__--_ "adaptive walls"
Li_--r_S_d_I4_lisa vague term covering highly diverse practices

using for example:

-pe[meable walls (perforated walls with variable porosity,

f__-_suction chambers, controlled back-pressure; changing
c

slits with valves or counterplates; transversa! flaps),

-flexible solid walls. /4

Various de_ices for measuring the _field are combined

with these means of testing the transversa=l,flow component: iso-

lated probes, iQngitudinal tubes fitted with pressure taps, laser

velocimetry, __taps. We will limit ourselves to a brief
description of operational systems, the results of which are pub-

lished and to the most advanced projects, primarily for two-dimen-

sional testing. The characteristics reduced in terms of test sec-

tion height (table i) f_i-l-i-t_4zercomparis_ons.
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-Wind Tunels With Perforated Walls and Multiple Chambers

/
The first developed at CALSPAN based on Sears% ideas [9] has

a section 25 cm wide and 30 cm high, walls with normal perforations

(22.5% opening) with 8 lower chambers and i0 upper chambers, tested

individually. Measurements of the flow speed and direction on the

control surface, performed at the beginning with clinometric probes

now are due to the calibration of long_tudinal tubes_quipped with
2 rows of pressure taps arranged _v_r--6pposi_e--gener_t_r_.These

tubes, installed over a rotary support, should enable measurements

to be performed on a cylindrical control surface for the extension

of three-dimensional flows (_ind tunnels IT, then 4T of AEDC)

figure i.

-Wind Tunnel With Slits and Multiple Chambers

_-_ _ASA A,,.._o 2
At .... AMS_ [i0], a 25 x 13 cm wind tunnel has 6

suction compartments for each wall. These compartments are in

turn divided _i_wise into 3 chambers for a three-dimensional

adaptation. The measurement of 2 disturbance speed components

on one control surface is replaced by the use of 2 control sur-

faces with measurement of the one cross-component using a laser

velocimeter.

-2D Wind Tunnels With Solid Flexible Walls

At the Univeristy of Southampton, the TSWT (Transonic Self
2

Streamlining Wind Tunnel) has a 15 x 15 cm square section and a

very long test section (1.12 m) whose upper and lower walls are

each shaped using 20 electric actuators with a similar number of

par-i_4_ pressure taps [ii]. As such the wind tunnel was used for

two- and three-dimensional testing to determine whether the dis-

turbances_Eo_b_ measured on the walls _ft_hheseare difficult to

obtain with precision (figure i).

At the Technical University of Berlin [12], the T.U.B. wind
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tunnel has a 15 x 15 cm square section with two flexible walls

over 0.69 m each shaped by 8 direct current acutators with a 25 mm

path and equipped with some 20 pressure taps.

At CERT at Toulouse, the T2 wind tunnel [18], which was the

subject of 2 reports [13, 14] has over its competitors the advan-

tages of one order of magnitude at least with respect to the Reyn-

olds numbers (0.37 x 0.38 m2 test section and generating pressure

__b) and an excellent re_&tive precision in the knowledqe Df wall

shapes (.usingpotentiometers of about 0.05 __an _spee_s tribu___"

tions (with 91 pressure taps on each wall). ByJvector_ng _n_

program for calculating the virtual field and optimizing the relax-

ation factors reduciag the time required for adaptation during a

gast of a few tens of seconds.

In addition to these advantages, the T2 wind tunnel has a rela- /5

tively short test section (.tablei). What can we conclude about

the precision of the reference conditions obtained in these condi-

tions? We shall return to this essential point after a brief re-

view of the new methods of assessing wall effects. It should be

pointed out that an attempt has been made to compensate for lateral

boundary layer effects using reliefs made by gluing paper cut out

in the shape of l_;e_lines [15]. This procedure finds its justi-

fication in recent CEAT tests [16] which show:the existence at the

root of the mo_delTtwosmall counter-rotat_ vortices, very differ-

rent from the model,-rein proposed by Preston [17].

3D Wind Tunnels With Flexible Walls

At the__z_ Wright /_i___Field)9" x 9" test section
(i.e. about 23 x 23 cm)_operating_h_e_Aha_ 2 flat side walls <°
whereas the other two are made up of flexible rods with alterna-

ting circular and triangular sections activated by some i00 actu-
ators. No measurement_was performed on the Awalls [3].



At the Technical University of Berlin [12] a second test

section, with an 18 x 15 cm2 octagonal section, is used for 3D

tests. The feasibility of such tests was/de_onh-_ra_d recently

in an oper_t-_on_atCesme in September 1983 (figure 3), despite

the smallAdeformations t4>-be-aohieved(of the order of one am).

At DFVLR, in the advanced project, Dehnbare Adapative Meb- 2_Z_

strecke (DAM_ the circular test section was made up of _n _-'l_ _-I_

tube 800 mm thick whose diameter was stretched in_ 8 sectiu,L_uyo

_-8 actuators 112] (figure_.

1.2 - NEW METHODS OF CORRECTING WALL EFFECTS

This was the title, in s_ngular form, of a report presented

at the 14th Symposium of Applied Aerodynamics at Toulouse in 1977

[19]. We still use this name for methods which have multiplied

for _ years and whose commonnp_int_,is t9 call on measurements

made on wa!4J_aorin their vie_ity_ Created zrom the necesslty
of being applicable to adapt_; but not perfectly adapted walls,

this __ method has for conventional walls the advantage of

eliminating certain controversial assumptions on lineary boundary

conditions [18, 20].

Without _oing into too much detail, we may mention the follow-

ing methods in the order they appeared:

Kemp: the unknown intensity of the singularities arranged

at the walls and _t the location of the model i_-determined _

s_s_ly_i-t_n'_peed_measurements e_ an equal number of control

points, on the model and at the walls, by resolving the line.ar_
system formed with the corresponding impact factors. The __-r_i_t_

singularities thus defined contribute alone to the interferences

under investigation.

-Smith [25] : the NLR I method differs_ from that of Kemp only
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y
in the limi%ation of the unknown singularities at the wall, the

model being represented by given singularities, functions of its

geometry and of overall lift and drag measurements.

Cap_lier et al4_i"[19]: _n contrast to the two aforementioned

methods/_he formulationAexpressed in terms of integrals of the
_deviations measured at the walls and calculated for the model.

_-_ avoids resolving the linear system and therefore eliminates the

consequences of random errors in the measurements. This method

applies not only to the two-dimensional case, but also to three-

dimensional flows in test sections with a rectangular section and

flat side/walls.

Swada [22] presented a very similar method which he recently

applied to two-dimensional unsteady flows [37].

!
--- Mokry and Ohman 123]: Direchlet's probl_L for_the_-_xial

inside the surface upon which boundary data are collected is sol-

ved in the form of a Fourier-Bessle series for three-dimensional

cases. Their coefficients are obtained using rapid Fourier trans-
forms.

For corrections calculated on the axis of the test section,

a :cylindrical control surface may be used no matter what the

shape of the testisection h_._.

Mokry compared these methods [24]_a two-dimensional test

case and showed that [19] and [23] gave identical results and

[22] and 125] deviated only very slightly.

Ashill [27] as well as Smith in the unpublished NLR II method

avoiding the use of the model which may be delicate in the presence

of supersonic or separation regions in the flow. They shouldo_

_herefore use measurements of the two disturbance components in

the vicinity of the walls.
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All of these methods are of the linear type and are limited

for this reason below M_-_I. Also they implicitly assume that the

boundary conditions are homogeneous enough for the measurements

near the walls to be significant.

For any method used, the precision required in knowing the

two disturbance components wi_l._e brought to light through the
explicit formulation of the _eedDand incidence corrections2based

on the Xelative longitudinal disturbance component u [19] cu, ac-

cording to the so-called conjugated formulation [28]ion the rela-

tive transversal component-WT. .By letting u_ and ul be the wall

interference components at the center of the test section and by

simplifying the formulas given in [18] based on an empty test sec-

tion.

No problem is raised by using formula (I) because it was

shown that it tolerates the truncation of the integratio_ermir_

_i_ owing to the rapid decrease in the impact function and the

fact that it eliminates the reference errors. The same is true

for formula (4) in regard to incidence. Conversely, for formula

(2) it _s necessary to determine the constant C. It is zero if

we adopt as reference a flow direction which is sufficiently up-

stream so that the difference_(_, &Iz)_€_-_l_)is zero. It also

shows in the nucleus of the integral a sp_e__:s_.eedifference which is
delicate to measure. __ -



Based on these formulas we therefore conclude that to _apply

the so-called new correction methods it is necessary to know, at

a right angle with the model, the speed vector in modulus and dir-

ection, in the vicinity of the walls, with a precision of the same

order 4_f as that required _4_nso-called "upstream infinity" condi-

tions.

1.3 - DETERMINING THE REFERENCE CONDITIONS

The crucial importance of determining these conditions accur-

ately was recently recalled in a report under the "Wind Tunnel

Testing Techniques" Committee of AGARD-FDP which set fort_the re-

quirements of airplane manufacturers with respect to wind tunnels

[29].

-- The investigation of an error limited to ACx = 0.0001 leads
to AM = 0.001 and As = 0.01° in regard to the Mach number and the

incidence. This goal, which seems a challenge, actually deserves

considerable effort because in other sources [30] it is shown that

a 1% gain in the cruise drag (considerable o_ in these oonditions)

is profitable even if we have to_quin_tle_the number of aerodyna-

mic tests of a transport aircraft.__jt_.0-_ r_

How can _e possibly know the direction and speed of an "infin-
ite upstream" flow in a wind tunnel with such accuracy?

Excluding the support effects, which will be discussed in

the second part, and remembering that we have to know the direction

and speed on a control surface with the same precision, by examin-

ing the errors inherent to the various procedures for measring the

flow disturbance components (laser, clinometric probes, etc), here

at ONERA we think that there is only one valid procedure: using

deformable solid walls where the quality of the surface condition

and pressure taps is equal to that obtained on airfoils and posi-

tion measurements showing the shape of the wall (which will be
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/
corrected for the boundary layer displacement thicknesses).

Among the wind tunnels which try to achieve these conditions,

we see that T2 has a shorter test section, but that it is long

enough to define the reference conditions perfectly, given the

balance functions discussed above. It has the largest number of

_a__ pressure measurements and actuators near the model and
 ddis-the best definition of the wall positions. The scope of theA

placements is slightly smaller and as a result the dimension of

the model is limited. TheJ_cemen_ pitch in other regions is

too s_-rong. _ --_

_ .-

__ In these apparently optima_lconditions, has the objective
f<_c_ _on been achieved? It is virtually impossible to calcu-

late an error: the shapes of adaptive walls are derived by pro-

cessing an_xternal virtual flow using Green's formula and whose_

_-___%__n____spe_Neasurements_e_x_t_. Conversely, th?4_ver-
_- _eeu_ a___t--_ng-le-wi4_ the model are also functlon_s of /8

the slopes obtained by smoothing and interpolation of the measured

dimensions. An intrinsic validation was therefore tried by plac-

ing the same (CA_7 airfoil with a 200 mm chord) over the

axis of the wind tunnel and at 80 Im_below this axis. By adapting_
each case, the wall shapes and par-i_t_lpressure_distributions are

totally different [15]. The variation of the lift factor as a

function of the Mach number for angles of 0 and 1°, shown in fig-_
ure 6 on a larg_e_scale,shows the di_perJ_i_n_f-hthemeasuri-ng_-
_i4_t-s. The la_r does not show any systematic deviation due to

the difference in testing conditions and it seems small enough for

us to be able to conclude that the objective is virtually if not

fully achieved. This success in two-dimensional testing leaves

promising prospects for extensions to three-dimensional flows pro-

vided that all precautions are taken to observe the purety of

the flows, the hom_geneity_of the boundary conditions and the pre-
cision of the __l_measurements in the presence of considerably
smaller disturbance fields.
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2 - WALL AND SUPPORT EFFECTS IN ONERA'S INDUSTRIAL WIND TUNNELS

In wind tunnels not yet equipped with adaptive walls and with

magnetic suspensions, it is still necessary to make corrections

for wall and _supporteffects to restore as far as possible the re-

sults which would be obtained on models in an unlimited atmosphere.

There are two types of corrections to be made for the potentials

under consideration:

-the wall effects are calculated based on the interference

potential __by the walls,
k_/

-the support effects are the result of the sum of the poten-

tial of the supports in an unlimited atmosphere and of the inter-

ference potential pr_mote_rby the walls.

2.1 WALL EFFECTS

Two methods are currently employed for calculating wall effects.

These methods have already been presented.

The first method, called the "conventional method" [31] con-

sists of calculating the potentia by the by sol-

ving a problem whose--da_a-ar_Tt_fo_lowing_ _..
.2

-the potential of the model in an u_e,

-the boundary conditions on the walis of the test section

involving the concept of€equivalent uniform wall porosity_

The secondmethod, called the "signature method" [19] allows

the potential_pr_mot_d-_bythe walls to be derived from data con-

sisting of: __3-m-n

-the potential of the model in an un___os_r_,
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-the distributions of pressures measured on the control

€ surfaces of the test section (.signatures).

These two methods have in common the assumption of a cylin- /9

drical test section)r_=ac_n_ to infinity, and the necessity of

making use of a mathematical description of the model.

2.1.1 Mathematical Description of the Model

Since we are referrin_ to a corrective calculation and not

a calculation of the flow onj the model, the specification of the
model is rudimentary: it should include the required number of

singularities for the model field to be properly _epresented at

a distance from the model. The best way to control the specifi-

cation consists of comparing the signatures measured and calcula-

_-_ ted on the walls of the test section in a configuration with per-

fectly known boundary conditions: in this case the _se of solid

walls is unambiguous.

c._ 5
The iterative process (figure 7) is t_e followzng:xusing sig-

nature measurements on the walls of a gumuedAtest section, in the

presence _--_(J..:_Ltl_._._andin.the absence of a model, by adding and subtracting
we find t___e_lo_k_g_d lift t_m_s_corresponding to

an isolated mo_el. The model specification associated with zero

porosity conditions of the walls makes it possible to obtain sig-

natures at the same locations of the test section and to divide

them into]l<Tcki_g_andixft terms. An examination of the differen-

ces between calculated and measured signatures makes it possible

to check whether the model specification should be improved and in

this case which part of the specification, volume, wake, lift is

to be altered to be acceptable in terms of manufacturer specifica-
tions.

Two examples illustrate the mathematical specifications of

the model.
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_,_,The first ex_ple concerns tests on a profile in a _._

cur-rent in S3_. in a _test section configuration. An ex-

ample of the signatures measured in the presence of a profile,

then corrected _'t_readings in the absence,,of a profile (figure

8_ show that the tapping errors were eliminated as well as the
effect of the w_e comb located downstre_. A comparison of Me

calculated and mea_red signat_es (.figure9) show that the lift _,_,0_

d_p_on_due to two intens_ vortices derived from measurements

of Cz and _ is adequate [32]. At zero lift, the description of
the vol_e using a single doublets is also adequate. Conversely,

the description of the wake usin_ a single source is increasingly

incorrect when ZZ (therefore Cx)_increases. This is due to_
absence ofT__p_i_g--D___-_eparations in the_es-
cription. Work is now underway to correct this.

The second example concerns a space model (figure i0) in a
2

47 m SIMA._te_.section. _._j!The_description___of the streamlined bodies
is here a_double doubletsJ__ of-Utheratio between the length
and diameter of the body. We see that the calculated signatures_
• . _ _ _, _
in good agreement wlth the measurements, per__e--_well_ the

shape of the model:_flat signature for the fuselage alone,Cb-ulging _€

for the entire spacecraft.

When theimathematical description of the model is considered
to be correct, calculations may begin to correct the wall effects.

2.1.2 Signatures Method /i0

As indicated above, this method does not require knowledge

of wall porosities. One simply needs to measure the signatures

over a control surface so that the wall porosity effects are hom-

ogeneous.

-_nperforated walls, and a_r4D_o_i solid one_, these oontrol

surfaces are the walls themselves. The'dur_7_tCl_n%ofthe signature

measurements does not exceed that of the wake measurements of a
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eur_en_p_ofile. This method is systematically applied to

profile testing in S3MA. The corrected results obtained on the

CAST 7 profile are in good agreement with those obtained in

the test section with adaptive walls of the T2 wind tunnel of

CERT/TOULOUSE (figure ll).as-w_e--144m_-c_urve_ and for_

th "lit c s he--maximum-Gz.

o

In the case of walls with slits, the signatures may no longer

be sampled on the walls. According,_toa recent p_blication [20],

the signatures should be recorded _t a distance from the walls
o

which is virtually equal to the sl_t pitch. This is a problem

for 'the test section which _ a limited number of slits.

o2.1.3 C_nvent_na.l Method

In addition to a correction description of the model, it is

necessary in the eor_ve_n_l_m_thoa to know the wall porosity

laws as a function of the Mach_and of the_ggn_ng_ pressuresand
to validate the concept of uniform wall porosity.

[31]Jar_.-_r4_f_r-r__dtoThe reference tests determine the wall

porosity laws. These tests may be ___y
_ performing tests

on the same model, wit4_the same Reynolds number:.

-in the same test section rendered gaided by _h_ ventilation

mask,

-in a d_r_tsection with such dimensions that the wall effects

are neglig_able.

As far as possible the second type of reference is preferred

because it has no limits due to the test section lo_ki1_ ana aoes

not require corrections which are high in three-dimensional cases.

The iterative process used for defining the porosity laws

is the following (figure 12).
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The work always includes an interpolation in M, Cz of
the wind tunnel data. The first assessment of the deviations

to be reabsorbed by corrections is established in incidence de-

viations as a function of Cz at a fixed Mach, and in Cx deviations

as a function of M for a given Cz.

The deviations of M and CZ between _nterpolated results, cor-
rected for the reference test and not corrected for the ventilated

wall test are introduced into the curve networks established as a /ii

function of porosity. Th_,sgives the first porosity law. It is

used to correct the results of the ventilated wall test. The dif-

ferences between the interpolated results corrected for both tests

are then examined. If these differences satisfy the manufacturer's

precision specifications, the work is completed. Otherwise, the

process is repeated. In general, three iterations are necessary.

_- If differences still exist, the reasons are investigated.

An examination of the pressure distributions measured on the

walls of the test section make it possible to define the Mach-ix_-

\_cidence limits beyond which the Mach number is greater than i. In

fact, this value is obtained on the ceiling _nd there zs not yet

co,].___ of the test section: _he supersonic region on the top

6 _cc skin of the wings reaches the eie_i-_g_The wall corrections are-%_
k,&

no longer applicable. Figure 13 shows, for a corrected Mach_ the
limits obtained at SIMA for three _l-_bconditions and at S2MA for 2

Lo_
hem_hhe_ models.

In the c%se of an S2MA transonic test section, for two use_
%_.

conditions of_perforated walls (by opening slide valves by i00 and

55% to modify the porosity), the porosity laws (figure 14) were

established by using as reference tests2tests on the same model
in SIMAwith an area 13 times larger than that of S2MA. These laws

_- proved to be correct for full and hal_ civilian aircraft models

up to Mach 0.92 and for full military aircraft models up to the

limits due to supersonic zones.
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In the case of a 20 m2 SIMA test section, the porosity laws

(.figure14) of 4-slotted or 8-slotted open configurations were

defined in the reference for tests performed in closed slotted

configuration. These laws are correct up to Mach 0.85.

Beyond this value, there are still differences between the

corrected results, obtained for the three test section cases, and

an attempt is being made to resolve these differences.

2.1.4 Indirect Signatures Method

One variant of the con_ention_l method consists of basing

ons_l_n the sign_tur-escalculatibn a_Aa function of the porosity

parameter assumed to be uniform and by comparison with the meas-

ured signatures to derive the wall porosity cartography. This

_-_ variant was used for the case of the S3MA perforated wall test

section. After verifying the correct description of the
• _o_

and lift terms in a g_ided test section, figure 15 shows that for

perforated walls, a comparison of the signatures leads to a Q

uniform porDsity _parameterQ of 0.2 on the walls. This porosity

is moreover identical to that derived from the overall efforts in

a _d reference test section.

In fact,Ithis indirect signatures method is used to check the

validity of the wall uniform porosity concept.

In test sections with perforated walls, a porosity test by /12

comparing the measured an_ calculated signatures has not raised

any special problems. _s _th this case the concept of a uniform
equivalent porosity was not handicapped by examining the signa-

tures. The oonve__---_-_method was retained because it is not

penalizing in terms of computer time, after the porosity laws are

established. Generally speaking, the more the porosity concept

is uniform, the more the mathematical description of models and

stings proves to be inadequate.
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2.2 MODEL SUPPORT INTERFERENCES
Corrections of the Mach number and of the Archimedean t-hr4/st

brought about by the presence of model supports may be obtained

experimentally based on measurements of the Kp distributions at

the location which the model ;fuselage axis would occupy. A clin-

ometric Goundi-ng._wouldalso make it possible to know the tail ;

unit setting cornection due _ support@_._L_,_€.

To avoid costly so_mdi-ngs,a calculation may be performed•

Two methods are used at present.

The surface singularities method begins with.a meshing of
i £_

obstacles __ test section _s walls. This technique is

directly derived from techniques used by manufacturers in an un=o__
kS

_o_-l_im_i-t_d iatmosphe_ _by adding the walls to simulate the eontai_n_d_o_,_e_

" _tm6s_hef_o_the test sections• Illustrations of the meshing are/

0 therefore borrowed from manufacturers. Figure 16 shows [33] the

sting and sting holder in the $5 guided test section of CEAT-

TOULOUSE used .by DASSAULT-BREGUET. Figure 17 shows the meshing

the wall of the_S2MA g_i_e_ test
of a Mirage model installed on /--'_-_section and of the device with 6 degrees of l-i_er_ to study load

trajectories: calculations performed by LE BOXEZ of AMD-BA.

Figure i_ is concerned with the assembly of a civilian air-

craft twin sting in a guided test section meshed by AEROSPATIALE.

More complex cases including ventilated walls and descriptions of

test section ends and upstreamhpa_-t_lwithtapered section are un-

der study• This method is still complicated to use and requires

powerful computers.

A description of test section obstacles using singularities

distributed over their skeletons of variQus_shapes has been tried

recently by ONERA [34] The only data_.a_e_he coordinates of the• A
assmbly skeleton and the area rule.

,\

16



iJ
An attempt is made to validate this method in an

2_sp_by comparison with the results of previous more soph-

isticated methods. Figure 19 shows, in these conditions, a good

agreement of the Kps and incidence promoted by an inclined sup-

port:_usedin a sabre assembly of the F4 model.

7o Q
The support description is tested in the guided test section

by comparing the measured and calculated signatures. In this

case, a description of the model-support system is used. Figure /13

14 shows the case of an ONERA standard model as_mbled i_ a

_.raightsting in the S3MA g_ided=rendered test section.T A model-_

_x__;_^-i-zj_4_i_nwith 20 doublets for the model and 15 for the sting pro-

@

vide a good agreement of the signatures.

Returning to the case of the F4 model in an S2MA transonic

test section, figure 19 gives the Kp distributions on the line

which the fuselage axis would occupy for various wall porosities.

We should insist on the relative magnitude of the wall effects

and sting interferences. In the case of an S2MA wind tunnel (fig-

ure 20), in the perforated wall version with maximum_r__he in-
cidence corrections are zero. The drag corrections resulting from

the longitudinal gradients promoted on the suppor_ sting and the

wall effects _re in a 3 to 4 ratio for a civilian aircraft model.
The sting interference is more crucial for military aircraft mo-

dels whose incidences may exceed 40 degrees (and even higher for

missiles) [35,36]. Given these high values and the stresses to

contain, the volumes of model_sup_ort mechanisms are such that the
wall effects for a well_o__ed_test section may seem secon-

dary. This real problem, in the absence of a magnetic suspension,

deserves to be considered first for future_eet_.wall wind tunnels.
L

2.3 APPLICATION TO INDUSTRIAL TESTING

We now have correct descriptions of models and its supports

and of the test section porosity laws. As of no_ the corrections
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are all calculated prior to testing for a specific_

test section, wall configuration, supports, model.

These corrections (figure 21) include four parts:

-corrections relative to an empty test section obtained from

corrected soundings, if necessary, and from the influence of the

probe support,

-calculated or measured support interferences,

-corrections_ wall effects and o_-the __adt of the

model on the te_t reference_. -

In all the computer calculations provide a set of corrections

depending on M, Cx, C_ (or incidence) expressed in the form of a

table or polynomial laws which a_eAlnrrosucee in the wind tunnel
calculations to obtained real time corrected results. Th_ cor-

rection calculations also provide the total T-i_-pr4M_ec_. by the

walls and supports,A_xrra MachAdistribution and incidence correc-

tion 6-_any Point_f_the model. It^is easy to know the%spi_nqand

camber correctlonsZo_theI_d __by the walls and the local |%_L

_4_nd tail unit setting corrections due to the model supports.

CONCLUSION /14

The advantage of pressure measurements on the walls of test

sections was_clearly established for calculations of wall effects.

For reasons of convenience)associated with the intemded use of
wind tunnels, these pressure measurements are _a._i%l_lperformed:

%D
-oqcas_ionally--in 3_ to control the concept of uniform por-

-_ osity of perforated walls and _o check the mathematical descrip-

tions of models and supports in a gui_d_test section,
cLos,:_-_-gJ

-systematically in 2D for direct access to corrections,
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-imperatively in test sections with adaptive walls,
-finally with _usp_c_ in test sections with slotted walls.

The measurements should be performed at a distance from the walls

which is_t_Ghn_l_i_l_difficult to do.

If the advantage of additional measurements of the other

component of the local flow on control surfaces is to eliminate

any model description, a real problem of measurement precision has

not yet been solved.

Optimized test configurations (test section, s%ing, model)

is the result of a compromise between wind tunnel investments,

the cost of testing and the quickness with which the results _r_T-.

°pare_ are rect-i-f4ed.In three-dimensional cases, the wall effect

levels are reduced_by limitations in model size due to the span

for civilian aircraft,A_ue to the length for high incidence mili-

tary aircraft. Small displacements of flexible walls will require

greater accuracy in pressure measurements and in the positions of

_[[ _ada_@ actuators. Test sections with _d adaptive walls are still

too recent to know their application limits and operating difficul-
ties.

Meanwhile, it is suggested to use adaptations to the main _

jof a test program. These adaptations may concern:

-models whose manufacturing specifications account for dis-

torsions in the flow of conventional walls (as practiced for aero-

elasticity);

-walls which should meet specifications using conventional

padding whether or not associated with improved ventilation dis-

tributions.

In any case, continuous revisions of concepts for minimizing

wall effects should follow improvements in the specifications for

precision required by manufacturers.
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Table 1

Wind Tunnels With Controlled 2D Boundary Conditions

TestSection BoundaryConditions ModelWind Location Section,o_,_ Iength/HTunnel Control C/H
Nb Points (paths,

Tnreshol_diH

T.S.W.T. University15x15_ 7.33 20 actua- 0.6_to1
of South-

k{_%mpton tors

T.U.B. Technical = .7
15x15_ 4.6 8 actua" -0.165.10-4 0.66

i

University
of Berlin tors

T2. ONERA-CERT 2
39x37an 3.5 16 actua-0.07 10-4Toulouse tors O.3 to O.5

CALSPAN Buffalo
25x30cm2 4.6 i0 boxes Longitudinal

AEDC Tullahoma (perfor-Tubes0.3° 0.3 to 0.5
ated
walls)

NASA California25x13cm2 5.66 3x6 Iaser 0.6
Ames boxes Velccimetry

(slottedovertwo
holes) 0.05° planes

23



This Page Intentionally Left Blank



tube

.,
i i 1'1"

I
!

\
,Ii
I!

I h
t
i.'

'IiI'
IiiII.\
i(
j,1

'I
11

"I

Fig. 1- A.E.D.C. 1 T -'-lA.vNG\..

3D Model--....--.-.---- --rr----
_9 ,L_

2D Model

Mach Number Control

/Induction

»~

~--------

-\~W-\ e&
Fig. 2 - Wi~d-~nn~ Southampton universitYJUI~7

25



Adjustinq motor

'-'

. . Adjusting

\.

mechanism-
Flexible
Wall .

-_._--..-.._--- _.
Test Section

I
I
I

. H·· 15.12 em

~
Flex~ble Wall B-n.&4em

I . bl b - 5.17 emr ex~ eo_ 37 dec]

Seal " - 225 em2
H

Detail Z i· tIS

\~
Fig. 3 -AUniversity of Berlin Wind Tunnel

Tapping

t-L
Adj uS,ting screwl

-----'"\

SedionA-A

~

-~H' -H--H~~)l--l

Section B-B

~ Attachment Rail

------J-1360
A

J L.-- 2400 ------j •

Fig. 4 - DFVLR Test Section Project with Blast4e Walls
M.vb ~e.,-..

26



ii!,

Actuators

• Fig. 5 - AFFDL Pilot Wind Tunnel With Flexible
Wall Elements <F.o_>

Cz

o,s. i I
o : model on axis

:model 80 mm under axis

_ •Measurements during j

0.7 "wake ,sounding , 7

06 /

! I I J I i

0.6 0,7 0,8

Fig. 6 - CAST 7 Profile. Lift as a Function of Mach Number
27



This Page Intentionally Left Blank



0.66
Ceiling

ICorrected Signatures _,___x_f Empty Test .qect_on Floor

Measurements

Ceiling
0.66

Wake Comb

0.6& f
, -'2"-"

-6 -& -2 0 Z X/[

Fig. 8 - 2D - Rough and Corrected Signatures _f/_mglq?_T_eG4xt°n

29



S3MA GB_-_TEST
CAST7 SECTIONc =0.2m

H • 0.76
Rc = 6.106

Experimental

...... Theoretical
L& - Ub

2U_

_C-_ TERMS ".

0 0 -1 0 1 X/C

Cz = 0,01 C" : 0,55 Ci_. 0.79

Fig. 9 - 2D Comparison of Calculated ana Measured Signatures
-----_ theor. 30 doublets

t! 1 U

S m.I • • exper, i

comple_ _pa cecraf t
92

Fig. i0 - 3D Signatures on Solid Walls

3O



"II
I
I
I I

I
~ -

, '

o.OS Cx.

o
_~0.""0~1"---.0~.o~1~0--" em 25%c

00..
0.02

0.2
O·o

1
(. ..:::..:,:..~.."..--- ..._..------........','" ....---+ ....

A: 0

~. \
~ 0 0

: I
~ PROFit CAST 7 •

,i C. O,2m r
• ..0.78 Re.S.l0S

:0 \
1
~ WALLS.
•
• •• T2 ADAPTA8t1! eo
\ 00 S3MA Perforated •....,

\.
.2

0,4

0,2

Fig. 11 - CAST 7 Profile - Comparison S3MA-T2 Results

VENTIIATED WApS

CORROCTED RESULTS

Porosity Law
I

Cbrrection Tables

Too Hiah
t

ACCEPTABLE--'
'--"

. ExPerirrental Sianatures
,...- ("""'-« H L~CALW M Limits. by
I . I' - l SuoerSOI1l.c ZOlles

Canparison Exp/Th.
Siqnatures

Cbrrection
Tables

Fig. 12 - ~tennination of the Porosity Laws of a Test Section
With Ventilated Walls.

31



Illl_ii_iiii_filllll
3 1176 01404 0290


